

# A Low-Noise Baseband 5-GHz Direct-Coupled HBT Amplifier with Common-Base Active Input Match

Kevin W. Kobayashi, *Member, IEEE*, and Aaron K. Oki, *Member, IEEE*

**Abstract**—This paper reports on an HBT direct-coupled 2-stage amplifier that uses active common-base input matching to provide multi-decade frequency performance from dc to 5 GHz. This work benchmarks the first reported HBT noise results of an HBT amplifier using common-base active input matching. The 2-stage amplifier consists of a common-base input stage that is directly coupled to a Darlington feedback amplifier output stage. The common-base input can be bias tuned to achieve >13-dB return loss at 3 GHz and a minimum noise figure of 2.9 dB at 1 GHz. A gain of 17.5 dB with a 3-dB bandwidth greater than 5 GHz was achieved under low-noise input bias. This amplifier topology can be implemented without the use of a complex microwave process, which typically integrates backside vias and microstrip matching components. The compact amplifier consumes an area of  $0.82 \times 0.47 \text{ mm}^2$ , which is 10 times smaller than a previously reported 2.5–4 GHz narrow-band passive matched HBT amplifier with similar noise and gain performance.

## I. INTRODUCTION

ACTIVE techniques are commonly used in FET technology in order to economically realize broadband impedance matching and balun networks in a small chip area. A technique that is utilized in MESFET to achieve broadband input matching is the common-gate input stage configuration [1]–[3]. This technique has the advantage of being able to match the input to 50 ohms, as well as for low noise figure, without the use of large, passive microstrip-matching networks. A common-gate configuration also lends itself to broadband impedance and gain performance due to the absence of miller capacitance multiplication at the input that is present in common-source topologies. Using this technique, broadband impedance matching from dc to microwave frequencies is achievable. This is attractive for applications such as test instrumentation, light-wave fiber optic communication, digital IC's, and modulator-demodulator IC's.

The Heterojunction Bipolar Transistor (HBT) is attractive for these applications because of its high-speed microwave digital capabilities and superior analog characteristics, such as its high device transconductance and good dc beta and threshold-matching properties. A wideband low cost direct-coupled HBT amplifier would have generic use in these applications. One popular direct-coupled bipolar design is the Darlington feedback amplifier. This amplifier is capable of dc to >10 GHz frequency performance using AlGaAs-GaAs HBT's [4]–[7]. However, the feedback nature of the design lends itself to high noise figures of  $\approx 5\text{--}6.5 \text{ dB}$  [4].

Manuscript received July 12, 1994.

The authors are with TRW Electronic Systems and Technology Division, Redondo Beach, CA 90278 USA.

IEEE Log Number 9405761.

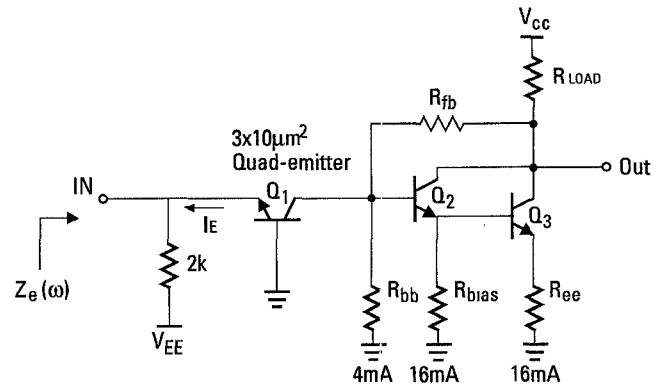



Fig. 1. Detailed schematic of the 2-stage direct coupled HBT amplifier with common-base active input match stage.

By implementing a common-base input stage with the Darlington feedback amplifier, a minimum noise figure of 2.9 dB was obtained while maintaining the multi-decade gain-bandwidth performance of the Darlington amplifier stage. The resulting active matched amplifier chip is 10 times smaller than a previously reported 2.5–4 GHz passive matched HBT amplifier, which was  $2.5 \times 1.65 \text{ mm}^2$  in size, and obtained a minimum noise figure of 3.7 dB and an associated gain of 15 dB at 3 GHz [8]. The following sections will describe the active matched amplifier design and measured results.

## II. COMMON-BASE DIRECT-COUPLED AMPLIFIER

The HBT direct-coupled amplifier consists of a common-base stage that is directly coupled to a Darlington feedback amplifier stage, shown in Fig. 1. The Darlington stage is almost identical to the design previously reported in [4]. The Darlington amplifier consists of transistor pair  $Q_2$  and  $Q_3$ , parallel and series feedback resistors  $R_{fb}$  and  $R_{ee}$ , biasing resistors  $R_{bias}$  and  $R_{bb}$ , and load resistor  $R_{load}$ . Transistors  $Q_2$  and  $Q_3$  are  $2 \times 10 \mu\text{m}^2$  four-finger HBT's biased at  $\approx 16 \text{ mA}$  each, and a  $V_{ce}$  equal to 2.6 and 4.0 V, respectively. The Darlington stage is self-biased through a 12-V supply voltage ( $V_{cc}$ ). The active matched input stage consists of a common-base transistor,  $Q_1$ , which is grounded at its base to extend its frequency operation down to dc. Transistor  $Q_1$  is a  $3 \times 10 \mu\text{m}^2$  quad-emitter HBT chosen for its low emitter resistance and good noise figure performance. Resistor  $R_{2h}$  is an emitter bias resistor that is connected to a negative supply voltage,  $V_{ee} \approx -2.3 \text{ V}$ . This bias voltage sets the common-base emitter bias current  $I_e$ . This bias current can be tuned for optimum noise figure or input return-loss performance.

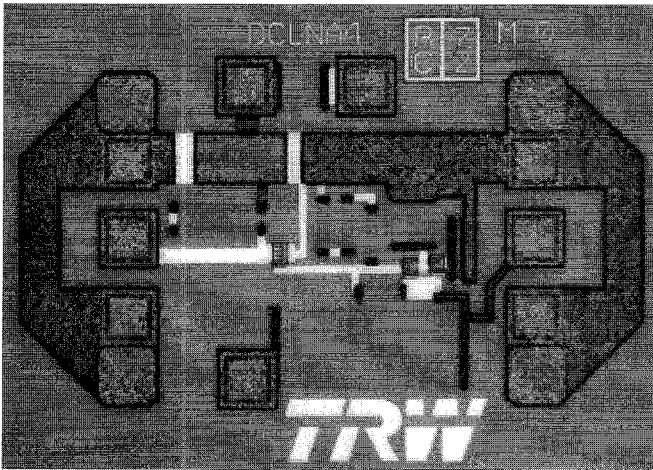



Fig. 2. Micro-photograph of the fabricated chip. The chip size is  $0.82 \times 0.47$  mm $^2$ .

The input return-loss of the common-base stage is determined by the input impedance looking into the emitter of the common-base transistor  $Q_1$ . This is given by the following expression:

$$Z_e(\omega) = r_e + \frac{nKT}{qI_c} + \frac{r_b}{1 + \frac{\beta_0}{\sqrt{1 + \omega^2 \cdot r_\pi^2 \cdot C_\pi^2}}} \quad (1)$$

where  $r_e$ ,  $r_b$ , and  $r_\pi$  are the HBT hybrid- $\pi$  model resistance parameters,  $C_\pi$  is the input shunt capacitance,  $\beta_0$  is the low frequency ac current gain,  $I_c \approx I_e$  is the bias current,  $n$  is the ideality factor,  $T$  is the temperature in Kelvin, and  $q$  and  $K$  are physical constants. From this expression, it is obvious that the input impedance is strongly dependent on bias current  $I_e$ . The last term in (1) shows the frequency dependence of the input impedance.

The input return-loss is then defined by the following expression:

$$RL = 20 \cdot \text{LOG} \left[ \frac{Z_0 - Z_e(\omega)}{Z_0 + Z_e(\omega)} \right] \quad (2)$$

where  $Z_0$  is the system impedance (50  $\Omega$ ) and  $RL$  is measured in dB.

For a  $3 \times 10 \mu\text{m}^2$  quad-emitter HBT ( $Q_1$ ): if  $r_e \approx 1.3 \Omega$ ,  $r_b \approx 8.5 \Omega$ ,  $\beta_0 = 60$ , and  $1/(2\pi R_\pi C_\pi) = 330$  MHz, then in order to achieve an input impedance of 50  $\Omega$  at low frequencies ( $Z_e(0) \approx 50 \Omega$ ), the common-base stage must be biased at 0.63 mA. This bias condition corresponds to an input return-loss  $> 15$  dB. Test data, however, shows that this bias condition does not correspond to optimum noise figure performance of the common-base transistor.

### III. MEASURED RESULTS

Fig. 2 shows a photograph of the fabricated direct-coupled amplifier chip that is  $0.82 \times 0.47$  mm $^2$  in area. The conventional Darlington amplifier reported in [4] was  $0.5 \times 0.7$  mm $^2$  in area. Much of the area of these chips, however, is consumed by a coplanar ground strip and rf probe pads. An optimized production chip could fit in an area of  $0.35 \times 0.35$  mm $^2$  including the active match stage.

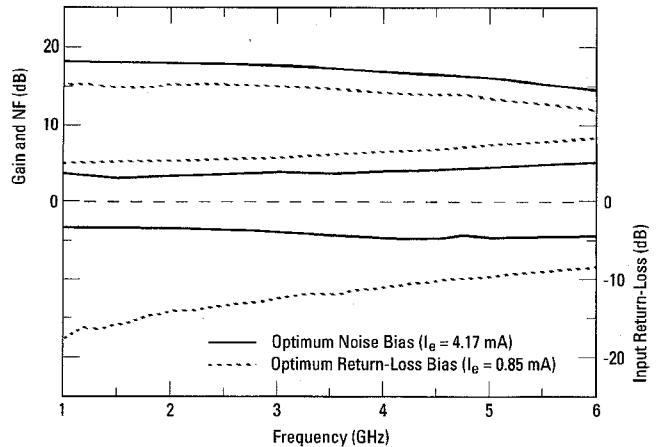



Fig. 3. Broadband gain, noise figure, and input return-loss performance at optimum noise and return-loss bias.

Fig. 3 gives the gain, noise figure, and input return-loss at optimum return-loss and noise figure bias conditions. Under optimum noise bias ( $I_e = 4.17$  mA), the gain is 17.5 dB with a 3-dB bandwidth of greater than 5 GHz and a noise figure range from 2.9–4.8 dB over the 1–6 GHz frequency range. Below 1 GHz, the gain has a flat response down to dc while the noise figure is flat down to the  $1/f$  corner frequency of the HBT devices. The measured  $1/f$  HBT corner frequencies can range from 1–100 kHz. Below this frequency, the noise figure of the amplifier is predicted to increase inversely with frequency. The input return-loss under this low noise bias condition is only 3.8 dB. Under optimum input return-loss bias ( $I_e = 0.85$  mA) the return-loss is 17 dB at 1 GHz and degrades to 8 dB at 6 GHz. The corresponding gain is 13.8 dB with a bandwidth greater than 5 GHz, and a noise figure that ranges from 5–7.9 dB across the 1–6 GHz band.

Fig. 4 gives the gain, input return-loss, and noise figure at 3 GHz versus the common-base emitter bias current,  $I_e$ . This figure illustrates the trade-off between optimum return-loss and noise bias. As  $I_e$  is reduced from 4.17 mA to 0.85 mA, approaching the optimum return-loss bias of  $I_e = 0.63$  mA, the input return-loss improves from  $-3.8$  to  $-11.6$  dB. Correspondingly, the noise figure increases from 3.7 to 5.74 dB, while the gain drops from 17.5 to 13.8 dB. At higher  $I_e$ , the return-loss is poorly matched to 50  $\Omega$ , however the device  $g_m$  increases, which improves the gain and noise figure match. Fig. 4 also shows the input return-loss predicted from (1) and (2), the dotted line, which is plotted against the measured return-loss over bias current,  $I_e$ . Equations (1) and (2) predict the return-loss to within 1 dB over most of the bias range.

### IV. CONCLUSION

An HBT 2-stage direct-coupled amplifier with common-base active input match was demonstrated. By directly coupling a common-base stage to the input of a Darlington amplifier, the noise figure of the Darlington was improved by 1.5–3.0 dB while maintaining wide gain-bandwidth performance. The resulting 2-stage amplifier achieved 17.5 dB gain to 5 GHz with a minimum noise figure of 2.9 dB under low noise bias. The common-base active match was implemented

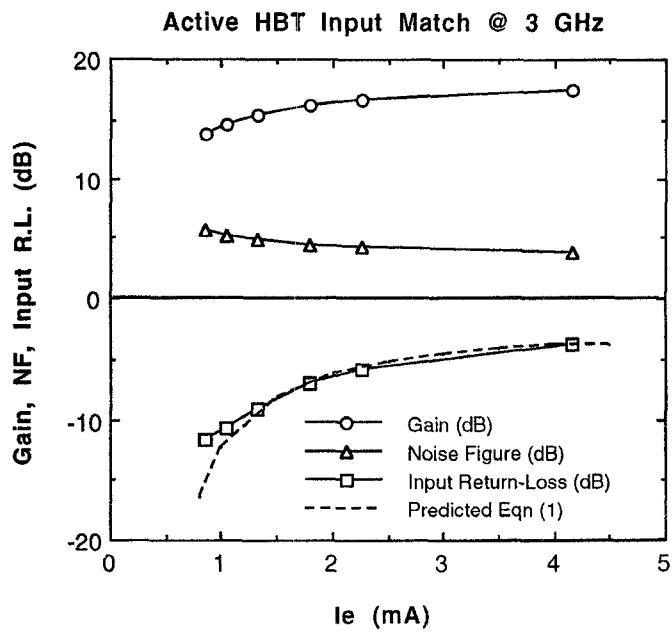



Fig. 4. Gain, return-loss, and noise figure at 3 GHz versus common-base emitter current bias,  $I_e$ .

with little impact on size. The resulting chip is 10 times smaller than a previously reported passive matched HBT amplifier with similar performance. In combination with a low cost HBT production technology, this active matching technique can be

useful for many commercial applications that require baseband (kHz) to microwave frequency performance.

## REFERENCES

- [1] Karl B. Niclas, "Active matching with common-gate MESFET's," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, no. 6, pp. 492-499, June 1985.
- [2] J. A. Archer, H. P. Weidlich, E. Pettenpaul, F. A. Petz, and J. Huber, "A GaAs monolithic low-noise broad-band amplifier," *IEEE J. Solid-State Circuits*, vol. SC-16, no. 6, pp. 648-652, Dec. 1981.
- [3] D. R. Decker, A. K. Gupta, W. Peterson, and D. R. Ch'en, "A monolithic GaAs IF amplifier for integrated receiver applications," in *Proc. 1980 IEEE MTT-S Int. Microwave Symp. Dig.*, Washington, DC, pp. 363-366.
- [4] K. W. Kobayashi, R. Esfandiari, A. K. Oki, D. K. Umemoto, J. B. Camou, and M. E. Kim, "GaAs heterojunction bipolar transistor MMIC DC to 10 GHz direct-coupled feedback amplifier," in *Proc. 1989 IEEE GaAs IC Symp.*, San Diego, CA, pp. 87-90.
- [5] K. W. Kobayashi, D. K. Umemoto, R. Esfandiari, A. K. Oki, L. M. Pawlowicz, M. E. Hafizi, L. Tran, J. B. Camou, K. S. Stolt, D. C. Streit, and M. E. Kim, "GaAs HBT MMIC broadband amplifiers from dc to 20 GHz," in *Proc. 1990 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig.*, Dallas, TX, pp. 19-22.
- [6] N. Nagano, T. Suzuki, A. Okamoto, and K. Honjo, "Monolithic ultra-broadband transimpedance amplifiers using AlGaAs/GaAs HBTs," in *Proc. 1991 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig.*, Boston, MA, pp. 81-84.
- [7] F. Ali, R. Ramachandran, and A. Podell, "Monolithic AlGaAs-GaAs HBT single- and dual-stage ultra-broadband amplifiers," *IEEE Microwave and Guided Wave Lett.*, vol. 1, no. 5, pp. 107-109, May 1991.
- [8] K. W. Kobayashi, R. Esfandiari, D. K. Umemoto, A. K. Oki, L. T. Tran, and D. C. Streit, "HBT low power consumption 2-4.5 GHz variable gain feedback amplifier," in *Proc. 1992 IEEE GaAs IC Symp. Dig.*, Miami, FL, pp. 304-312.